Nonoscillation in nonlinear difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonoscillation criteria for second-order nonlinear differential equations

Consider the second order nonlinear differential equations with damping term and oscillation’s nature of ( ( ) '( )) ' ( ) '( ) ( ) ( ( )) ( '( )) 0 r t x t p t x t q t f x t k x t    0 t t  (1) to used oscillatory solutions of differential equations ( ( ) '( )) ' ( ) ( ( )) ( '( )) 0 t x t t f x t k x t     (2) where ( ) t  and ( ) t  satisfy conditions given in this work paper. Our ...

متن کامل

Oscillation and Nonoscillation of Even - Order Nonlinear Delay - Differential Equations

for their oscillatory and nonoscillatory nature. In Eqs. (1) and (2) y("(x) = (d%/dx')y{x), i = 1, 2, • • • , 2n; yr(x) = y(x — t(x))] dy/dx and d2y/dx2 will also be denoted by y' and y" respectively. Throughout this paper it will be assumed that p(x), j(x), t{x) are continuous real-valued functions on the real line (—°°, °°); j(x), p(x) and t(x), in addition, are nonnegative, r(x) is bounded a...

متن کامل

Exponential Stability in Nonlinear Difference Equations

Non-negative definite Lyapunov functionals are employed to obtain sufficient conditions that guarantee exponential stability of the zero solution of a nonlinear discrete system. The theory is illustrated with several examples.

متن کامل

Global Attractivity in Nonlinear Delay Difference Equations

We obtain a set of sufficient conditions under which all positive solutions of the nonlinear delay difference equation x„+l = x„f(xn_k), n = 0,1,2,..., are attracted to the positive equilibrium of the equation. Our result applies, for example, to the delay logistic model JVI+i = aN¡/(\ +ßNt_k) and to the delay difference equation xn+i = x„er^~x"-k'1 .

متن کامل

NONLINEAR VOLTERRA DIFFERENCE EQUATIONS IN SPACE lp

Volterra difference equations arise in the mathematical modeling of some real phenomena, and also in numerical schemes for solving differential and integral equations (cf. [7, 8] and the references therein). One of the basic methods in the theory of stability and boundedness of Volterra difference equations is the direct Lyapunov method (see [1, 3, 4] and the references therein). But finding th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1994

ISSN: 0898-1221

DOI: 10.1016/0898-1221(94)00108-1